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Abstract 10 

A mathematical solution is presented that describes both axial wall stress and axial displacement of 11 

buried pipe subject to temperature and pressure change with axial displacement resisted only by friction 12 

at the embedment interface. A simple model and its mathematical solution are developed to clarify the 13 

way a pipe transfers load to the surrounding embedment. Equations are derived for maximum pipe wall 14 

axial stress and maximum pipe displacement at the free ends of an infinitely long buried pipe. 15 

Dimensional analysis is used to reduce the number of independent variables. The results advance 16 

understanding of buried pipe behavior and provides a basis for additional research. Limitations 17 

regarding use of the derived equations are discussed. 18 
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Introduction 20 

Methods for calculating the magnitude of unrestrained expansion and contraction of materials due to 21 

temperature and pressure change are taught in engineering courses and derived in commonly used text. 22 

These methods are often applied to calculate axial displacement of unrestrained pipe due to changes in 23 

temperature and both internal and external pressures. However, axial displacement of a buried pipe is 24 

partially restrained by friction that develops at the pipe-embedment interface. A mathematical 25 

expression describing axial displacement of pipe under this condition is developed herein to support 26 

better understanding of buried pipe behavior and facilitate additional research.  27 

The ASCE Task Committee on Thrust Restraint Design for Buried Pipelines recognized the need for a 28 

mathematical description of this problem (ASCE 2014). The committee suggested that the relationship 29 

between frictional resistance and displacement at the pipe-embedment interface must be similar to that 30 

derived by geotechnical engineers for the purpose of approximating pile foundation vertical 31 

displacement. Approximate closed-form solutions that describe axial displacement of piles have been 32 

developed by Randolph and Wroth (Randolph and Wroth 1978) and Motta (Motta 1994). Their solutions 33 

assume linear elastic behavior of the pile and elastic perfectly plastic behavior of adjacent soil. Such 34 

mathematical formulations helped clarify how foundation piles transfer load to the surrounding soil. 35 

These concepts, with modifications, are used herein to develop equations that describe buried pipe axial 36 

displacement and pipe wall axial stress caused by both temperature and pressure changes. The solution 37 

is then used to derive an expression for the limiting axial displacement at the free end of an infinitely 38 

long buried pipe due to temperature and pressure change.  The solution confirms the intuitive 39 

expectation that the maximum pipe wall stress in a buried pipe that is not restrained at both ends and 40 

experiences temperature and pressure change is less than the value calculated for a pipe restrained at 41 

both ends. Variables are reduced to dimensionless form and a chart that presents relationships between 42 
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problem variables is presented. Finally, application and limitations regarding the use of derived 43 

equations are discussed. 44 

Problem Statement 45 

 46 

A simple model of a buried pipe is used  to facilitate the development of a mathematical solution. Figure 47 

1 illustrates the conceptual problem. A horizontal pipe of constant cross-section and length 2a 48 

experiences normal and shear stresses that act uniformly about its circumference at the pipe-49 

embedment interface. The pipe expands or contracts due to temperature or pressure change resulting 50 

in shear stress that varies along the pipe length. Normal stress is herein presumed uniform along the 51 

entire length of pipe for mathematical convenience. 52 

Initially, there is no shear stress at the pipe-embedment interface. Shear stress at the pipe-embedment 53 

interface develops in response to axissymetric axial displacement caused by temperature change, ΔT, 54 

change in external total stress acting normal to the circumference, ΔQ, and change in internal pipe 55 

pressure, ΔP. Individually or acting together, ΔT, ΔQ and ΔP cause the pipe to expand or contract both 56 

radially and axially. There are no caps or restraints at either end of the conceptual pipe. Frictional 57 

resistance that develops along the pipe-embedment interface is the only force opposing pipe axial 58 

displacement. A mathematical solution that approximately describes axial displacement for buried pipe 59 

experiencing ΔT, ΔQ and ΔP is derived. 60 

Simplifying assumptions are made to facilitate the mathematical solution. Both the pipe and 61 

embedment materials are presumed to be linear elastic, homogeneous and isotropic materials. Pipe wall 62 

strain due to temperature change is linearly proportional to ΔT. Body forces are not considered. Shear 63 

and normal stresses acting at the pipe-embedment interface are axissymetric.  Also, it is presumed that 64 

initially no shear or axial stresses act on or in the pipe wall. A stick-slip model is used to describe pipe-65 
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embedment interface friction. The stick-slip model is described in the next section.  Additional 66 

simplifying assumptions are introduced in subsequent discussion as they are applied. 67 

The problem is two-dimensional since a pipe subject to changes ΔT, ΔQ and ΔP must expand or contract 68 

both radially and axially. However, for mathematical convenience, an expression is derived for the one-69 

dimensional axial displacement condition. Hence, functions relating pipe-embedment interface normal 70 

and shear stress to radial expansion or contraction of the pipe are not included in the derivation.  71 

Geometric symmetry about the pipe centerline allows simplification of the problem. As seen in Figure 1. 72 

The pipe has length 2a. The horizontal distance from the center of the pipe, x, is positive to the right of 73 

centerline and negative to the left.  ΔT, ΔQ and ΔP will not result in axial displacement at x=0 due to 74 

symmetry. Additionally, functions representing embedment-pipe interface axial shear stress τ(x), pipe 75 

axial displacement, δ(x), and pipe-wall axial stress, σ(x), are expected to be symmetric about x=0.  The 76 

symmetry of these functions is exemplified by graphs presented on Figure 2. Due to this symmetry, a 77 

solution that describes τ(x), δ(x) and σ(x) for positive values of x is sufficient to completely describe the 78 

problem.  79 

Expectedly, the plots of  τ(x), δ(x) and σ(x) are mirrored about the x-axis for conditions of pipe expansion 80 

and contraction as shown on Figure 2. This results from two conceptual model conditions. First, is the 81 

condition that, τ(x), δ(x) and σ(x) are zero prior to application of ΔT, ΔQ and ΔP. Second, materials are 82 

modeled to be linear thermoelastic and exhibit linear response to temperature and pressure change.  83 

Consequently, a complete solution may be represented by the solution to either the pipe expansion or 84 

contraction condition. Therefore, for convenience, the solution is developed herein only for the 85 

conditions of ΔT, ΔQ and ΔP that result in pipe expansion.  86 

Figure 3 presents the problem to be solved for the expanding pipe right of centerline, i.e. positive x,  87 

τ(x), δ(x) and σ(x) values. The left end, x=0, is “fixed” and the right end, x=a, is “free”.  The boundary 88 



5 
Buried Pipe Axial Displacement due to Temperature and Pressure Change             Mark C. Gemperline 

conditions at the ends of the pipe are: δ(0) = 0, dσ(0)/dx = 0, and σ(a) = 0. A discontinuity is present at 89 

x=b where δ(b) = δm.  Shear stress increases linearly in the region 0≤x<b with τ(0)=0 and τ(b)= τm. Shear 90 

stress is constant and of magnitude τm in the region b≤x≤a. Graphs depicting a set of possible functions 91 

of τ(x), δ(x) and σ(x) are presented on Figure 4. These graphs were created using the subsequently 92 

developed solution using conditions discussed later in this paper.  93 

Pipe-Embedment Interface Shear Behavior 94 

Figure 4 shows τ(x) increasing in magnitude with increasing x in the region 0≤x≤b and constant in the 95 

region b≤x≤a. The discontinuity at x=b is a consequence of assuming a stick-slip model to represent the 96 

friction that develops on the pipe-embedment interface.  The stick-slip model for the pipe-embedment 97 

interface friction behavior is portrayed on Figure 5 and described by the following equations. 98 

𝜏(𝑥) =  𝛿(𝑥)𝜓  for 𝛿(𝑥) <  𝛿𝑚         1 99 

𝜏𝑚 =  𝛿𝑚𝜓 for 𝛿(𝑥) ≥  𝛿𝑚         2 100 

Where 101 

𝜏(𝑥) = pipe-embedment shear stress at x. 102 

𝛿(𝑥) = pipe axial displacement at x. 103 

𝛿𝑚= magnitude of pipe axial displacement required to mobilize τm. 104 

𝜏𝑚= maximum pipe-embedment interface frictional resistance.  105 

𝜓 = 𝜏𝑚 𝛿𝑚⁄ .  106 
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Herein, b is termed the development length and is the least value of x at which the pipe has moved 107 

sufficiently to achieve τm. The mathematical solution developed herein presumes pipe axial 108 

displacement at x=a is greater than or equal to 𝛿𝑚. 109 

The pipe behavior in the regions 0≤x<b and b≤x≤a have the following interpretations: 110 

 0≤x<b: the embedment adjacent to the pipe moves with the pipe as the pipe displaces axially in 111 

response to ΔT, ΔQ and ΔP. In other words, the embedment seemingly sticks to the pipe. The 112 

shear stress at the pipe-embedment interface increases linearly with displacement and occurs 113 

concurrently with the development of embedment shear strain. 114 

 b≤x≤a: The pipe has displaced axially a sufficient distance in response to changes in ΔT, ΔQ and 115 

ΔP to achieve τm at the pipe-embedment interface. The pipe slips past the embedment with 116 

constant shear stress, τm. 117 

Values that best represent variables τm and δm depend, among other things, on embedment properties, 118 

pipe embedment interface frictional characteristics, history of pipe expansion and contraction,  and 119 

pipe-embedment geometric variables. The hypothetical τ(x) v. δ(x) plot, with a limiting value of τ
m

, is 120 

analogous to the bilinear t-z curve proposed by Motta in his development of an approximate closed-121 

form solution for the displacement of axially loaded piles (Motta, 1994). Motta stated, “Procedures for 122 

the evaluation of t-z curves are mainly empirical, however some theoretical basis has been given (Kraft 123 

et al. 1981).” 124 

Different sets of equations are needed to describe pipe behavior and pipe-embedment interaction on 125 

either side of the discontinuity at x=b. These equations are developed herein. Equilibrium, conditions of 126 

continuity and compatibility and boundary conditions are used to derive the problem solution.  127 
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Figures 6a and 6b separate the problem into two parts that are characterized by  0≤x<b and b≤x≤a.  128 

Different boundary conditions apply to these pipe segments. Hence, these pipe segments are treated 129 

separately in subsequent development of a mathematical solution. 130 

One-Dimensional Representation of the Problem 131 

A one-dimensional model is developed to simplify derivation of a mathematical solution. The circular 132 

pipe is herein modeled as a horizontal plate of uniform thickness and having a width equal to the 133 

outside circumference. This is illustrated in cross-sections on Figures 7a and 7b. The length of the plate 134 

is equal to the length of the pipe, the width of the plate is equal to the outside circumference of the 135 

pipe, and the cross-sectional area of the plate is equal to the cross-sectional area of the pipe wall. 136 

Friction develops on only one side of the plate to appropriately represent friction developing only on the 137 

outside of a pipe.  138 

The cross-sectional area of the pipe wall and hypothetical plate are equal. To ensure this, the 139 

transformed thickness, t, of the hypothetical plate is the pipe cross-section wall area, A, divided by the 140 

pipe external circumference. 141 

𝑡 =
𝐴

𝜋𝐷2
            3 142 

Where: 143 

A = pipe wall cross-sectional area. 144 

D2 = pipe outside diameter. 145 

This transformation of pipe wall thickness simplifies subsequent calculations while appropriately 146 

maintaining important pipe problem characteristics. Comparing the circular pipe to the one-dimensional 147 

plate model: shear stress at the pipe-embedment interface acts on equal surface areas resulting in the 148 
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same values for axial force; and the axial force is divided by equal cross-sectional area resulting in the 149 

same axial stresses. Axial stress is presumed to develop uniformly and equally within both the plate and 150 

pipe wall due to the contribution of shear stress on one surface. The equality of both surface and cross-151 

sectional areas for the plate and pipe ensures equivalent axial stress. A unit width of the transformed 152 

pipe is used in subsequent problem development. 153 

Thermal and Pressure Effects 154 

The component of pipe axial strain due to ΔT, ΔQ and ΔP, ε1, is constant along the length of the pipe and 155 

is approximated by (Boresi and Sidebottom 1985):   156 

o ε1=CΔT -2ν/E (ΔQ D2
2-ΔP D1

2)/ (D2
2-D1

2)      4 157 

where: 158 

o E and ν are the Young’s modulus and Poisson ratio for the pipe wall material.  159 

o D1 and D2 are the pipe inside and outside diameters respectively.  160 

o C is the coefficient of linear thermal expansion. 161 

o Strain resulting in increased pipe length is positive strain. 162 

Pipe Wall Stress-Strain Behavior 163 

The component of pipe wall axial strain, ε2(x),  caused by pipe wall axial stress, σ(x) is approximated by: 164 
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o ε2(x) = 
𝜎(𝑥)

𝐸
         5 165 

o Herein, pipe wall compressive stress and strain are positive. 166 

Solution 167 

Initially, the general equations describing relationships between stress, strain and displacement are 168 

defined. This is followed by independent development of the governing equations for pipe segments left 169 

and right of the discontinuity at x= b.  170 

The rate of change of axial displacement with respect to x is: 171 

𝑑

𝑑𝑥
𝛿(𝑥) = ε1 − ε2(𝑥)          6 172 

Figure 8 is a free-body diagram for an infinitesimal length, dx, of a unit width of transformed pipe wall 173 

having transformed thickness, t.   174 

Horizontal force equilibrium on segment dx leads to the following expression.  175 

 
𝑑

𝑑𝑥
𝜎(𝑥) = −

𝜏(𝑥)

𝑡
          7 176 

Substituting Eq. 5 into Eq. 6 yields.  177 

𝑑

𝑑𝑥
𝛿(𝑥) = ε1 −

σ(x)

𝐸
          8 178 

Develop problem for 0≤x<b 179 

Substitute Eq. 1 into Eq. 7. 180 

𝑑

𝑑𝑥
𝜎(𝑥) =

−𝛿(𝑥)𝜓

𝑡
          9 181 

Differentiate Eq. 9 with respect to x. 182 
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𝑑2

𝑑𝑥2 𝜎(𝑥) =
−𝜓

𝑡
{

𝑑

𝑑(𝑥)
𝛿(𝑥)}         10 183 

Substitute Eq. 8 into Eq. 10. 184 

𝑑2

𝑑𝑥2 𝜎(𝑥) =
−𝜓

𝑡
{ε1 −

σ(x)

𝐸
}         11  185 

Rearrange Eq. 11. 186 

 
𝑑2

𝑑𝑥2 𝜎(𝑥) −
𝜓

𝐸𝑡
σ(x) =

−𝜓

𝑡
{ε1}         12 187 

The general solution to Eq. 12 is 188 

𝜎(𝑥) = 𝐶1𝑒𝑘𝑥 + 𝐶2𝑒−𝑘𝑥 + 𝜀1𝐸         13 189 

where 190 

𝑘 = √
𝜓

𝐸𝑡
  191 

and C1 and C2 are constants.         14 192 

Differentiate equation 13.  193 

𝑑𝜎(𝑥)

𝑑𝑥
= 𝐶1𝑘 𝑒𝑘𝑥 − 𝐶2𝑘 𝑒−𝑘𝑥         15 194 

Substitute 13 into 8.   195 

𝑑

𝑑𝑥
𝛿(𝑥) = ε1 −

𝐶1𝑒𝑘𝑥+𝐶2𝑒−𝑘𝑥+𝜀1𝐸

𝐸
        16 196 

Rearrange 16 and integrate between x= 0 and x. 197 

𝛿(𝑥) =
𝐶1𝑘𝑡(1−𝑒𝑘𝑥)−𝐶2𝑘𝑡(1−𝑒−𝑘𝑥)

𝜓
+ 𝐶3        17 198 
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where C3 is introduced as an integration constant. 199 

Develop problem for b≤x≤a 200 

By problem definition 𝜏(𝑥) = 𝜏𝑚 in the region for b≤x≤a. 201 

Substitute Eq. 2 into Eq. 7  202 

𝑑𝜎(𝑥)

𝑑𝑥
=

−𝜏𝑚

𝑡
           18 203 

Rearrange Eq. 18 and integrate between b and x 204 

 𝜎(𝑥) =
−𝜏𝑚

𝑡
(𝑥 − 𝑏) + 𝐶4         19 205 

where C4 is introduced as an integration constant. 206 

Substitute Eq. 19 into Eq. 8  207 

𝑑

𝑑𝑥
𝛿(𝑥) = ε1 −

−𝜏𝑚
𝑡

(𝑥−𝑏)+𝐶4

𝐸
         20 208 

Rearrange Eq. 20 and integrate between the limits b and x 209 

𝛿(𝑥) =
𝜏𝑚

2𝐸𝑡
(𝑥 − 𝑏)2 −

𝐶4−𝐸𝜀1

𝐸
(𝑥 − 𝑏) + 𝐶5       21 210 

where C5 is introduced as an integration constant. 211 

Solve for Constants 212 

Boundary and compatibility/continuity conditions are used to solve for constants C1 through C5. 213 

Apply the boundary condition δ(0) = 0 to Eq. 17.  214 

𝐶3 = 0            22 215 
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Apply the boundary condition, σ(a)=0 to Eq. 19 . 216 

𝐶4 =
𝜏𝑚

𝑡
(𝑎 − 𝑏)          23 217 

Apply the boundary condition δ(b) = δm to Eq.21. 218 

𝐶5 = 𝛿𝑚           24 219 

Equate Eq. 13 and Eq. 19 to ensure pipe wall axial stress compatibility at x=b. Solve for C1. 220 

𝐶1 = 𝑒−𝑘𝑏(
(𝑎−𝑏)𝜏𝑚

t
− 𝐸𝜀1 − 𝐶2𝑒−𝑘𝑏)         25 221 

Equating Eqs. 17 and 21 to ensure axial displacement compatibility at x=b. Solve for C2. 222 

𝐶2 =
𝑘((𝑎−𝑏)𝜏𝑚−𝐸𝜀1𝑡)(𝑒−𝑘𝑏−1)−𝜓𝛿𝑚

𝑘𝑡(𝑒−𝑘𝑏−1)
2         26 223 

Solve for development  length (b) 224 

Apply the boundary condition dσ(0)/dx=0 to Eq. 15 and solve for C1. 225 

  𝐶1 = 𝐶2           27 226 

Equate Eqs. 25 and 26 and solving for b.  227 

b =

𝜏𝑚
2

∗𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊(
2

𝜏𝑚
∗𝑒

−(
2

𝜏𝑚
(𝜓𝛿𝑚+𝑎𝜏𝑚𝑘𝐸−𝜀1𝑡𝑘𝐸))

)+𝜓𝛿𝑚+𝑎𝜏𝑚𝑘−𝜀1𝑡𝑘𝐸

𝜏𝑚𝑘
     28 228 

Solve for the maximum axial pipe displacement, 𝛅𝐦𝐚𝐱 229 

The distance (a-b) reaches a limiting value as b increases.  230 

Substitute Eq. 25 and Eq 26 into Eq. 27 and solve for (a-b). 231 
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(𝑎 − 𝑏) =
𝜏𝑚(𝑒−𝑏𝑘−1)

2
+(2𝜓𝛿𝑚𝑒−𝑏𝑘+𝐸𝜀1𝑘𝑡(𝑒−2𝑏𝑘−1))

𝜏𝑚𝑘(𝑒−2𝑏𝑘−1)
      29 232 

Solve for the limiting value. 233 

lim
𝑏→∞

(𝑎 − 𝑏) =
𝐸𝜀1𝜏𝑚

𝜏𝑚
−

1

𝑘
         30 234 

This suggests that buried pipe of sufficient length has a limit to axial displacement, 𝛿𝑚𝑎𝑥.  235 

Apply this limiting value of (a-b)  to  Eq. 27  236 

𝛿𝑚𝑎𝑥 =
𝛿𝑚

2
+

𝐸𝑡𝜀1
2

2𝜏𝑚
          31 237 

Observe that 𝛿𝑚𝑎𝑥is independent of pipe length.       238 

Solve for the limiting value of pipe wall axial stress 239 

The maximum axial stress, σmax, occurs at the value of x causing dσ(x)/dx=0.  240 

Set Eq. 15 equal to 0 and solve for x. The result is x=0.  Consequently,  σmax occurs at x=0.    241 

Find σmax= σ(0) using Eq. 13.  242 

𝜎𝑚𝑎𝑥 = 𝐶1 + 𝐶2 + 𝜀1𝐸           32 243 

A classical thermoelastic material that is fully restrained at both ends, without friction, and subject to 244 

temperature or pressure change will experience an axial pressure 𝜀1𝐸.  A value less than this is 245 

intuitively expected since friction on the sides of the pipe assumes some of the stress. Consequently, the 246 

sum  (C1+C2) < 0 is a necessary condition for Eq. 32 to be reasonable. 247 
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Experimentation using the equations above reveals that the sum (C1+C2) is negative and approaches 0 248 

as embedment length, b, approaches infinity. Hence, the assumption that  𝜀1𝐸 equates to the maximum 249 

stress is generally appropriate for a long pipe.    250 

Dimensionless Variables 251 

The dependent variables σ(x) and δ(x) may be calculated using Eqs. 13 and 17 for the region 0≤x<b and 252 

Eqs. 19 and 21 for the region b≤x≤a. The independent variables are x, δm, τm, E, t, a, and ε1: where t and 253 

ε1 are calculated using Eqs. 3 and 4 respectively. Figure 4 exemplifies results of calculations using the 254 

following variable values. 255 

δm = 5 mm 256 

τm = 20 KN/m2 257 

E = 3000 MN/m2 258 

t = 25 mm  259 

a = 25 m 260 

ε1= 0.005  261 

The equations were applied by first calculating the development length (b) using Eq.28. This requires the 262 

use of software having the LambertW function. Alternatively, b could be determined by equating Eq. 25 263 

and Eq. 26 and solving iteratively for a value of b that adequately approximates the equality. 264 

Subsequently, Eqs. 22 through 26 were used to calculate the constants C1 through C5. Finally, σ(x) and 265 

δ(x) were calculated by applying problem variables and constants C1 through C5 to Eqs. 13 and 17 for 266 

the region 0≤x<b and to Eqs. 19 and 21 for the region b≤x≤a. 267 
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Tables can be created that present the results of calculations for dependent variables σ(x) and δ(x) for 268 

preselected  values of the independent variables. However, many pages of tabularized values could 269 

result. For example, consider representing each of the seven independent variables using three values. A 270 

total of 37=2187 combinations exist.  271 

The number of independent variables can be reduced using dimensional analysis and thereby permit a 272 

more condensed presentation of the derived functions. Dimensional analysis was accomplished by the 273 

author using methodology described by Langhaar (Langhaar 1951).  The following represents a complete 274 

set of dimensionless variables.   275 

{σ(x)/τm, δ(x)/δm, x/ δm, a/δm, t/δm, E/τm, ε1} 276 

The dimensionless dependent variables are σ(x)/τm and  δ(x)/δm. The number of independent variables 277 

has been reduced from seven to five. Representing each of the five independent variables with three 278 

values results in a total of 35 = 243 combinations. This is much less than the 2187 combinations needed 279 

for the original seven independent variables. Nevertheless, 243 is still many combinations. Furthermore, 280 

a table of values does not facilitate a clear understanding of the relationship between variables.   281 

A chart that graph σ(x)/τm and δ(x)/δm for several values of  ε1 and continuously with x would reasonably 282 

contain considerably more information and information that is more easily interpreted than tabularized 283 

results. Such a chart is presented on Figure 10. Figure 10 presents σ(x)/τm and δ(x)/δm continuously with 284 

respect to x and presents results for  5 values of ε1. The chart presents data for single values of 285 

dimensionless variables a/δm, t/δm and E/τm. Hence, a single chart represents all but the three 286 

dimensionless variables a/δm, t/δm and E/τm by multiple values. A set of charts, consisting of 33=27 287 

individual charts, would convey calculated results for 3 values representing each of these three 288 

remaining dimensionless variables.  289 
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The optimum ranges to be used in plotting sets of charts would depend most significantly on pipe 290 

material type, of which there are many. Creating these charts is beyond the scope of this paper.  291 

Application 292 

The conceptual pipe model and its presented solution characterize the general behavior of buried pipe 293 

with respect to axial displacement in response to temperature and pressure change. The model and 294 

mathematical representation attempts to clarify the way a pipe transfers load to the surrounding 295 

embedment. It is expected that the reduced number of independent variables created by dimensional 296 

analysis will simplify experimental designs for physical models.  The mathematical solution may be 297 

applied to practical situations with careful consideration given to the effects of the simplifying and 298 

inherent assumptions. Although all assumptions and their effect on the calculated values should be 299 

considered when using the equations, special attention must be given to selection of τm and δm. 300 

Shear stress and normal stress have been assumed to be radially uniform. Expectedly, shear and normal 301 

stress will be dependent on the degree of expansion or contraction. Both normal stress and shear stress 302 

will be lower when the pipe is contracting than when it is expanding, and their magnitude would be a 303 

function of the magnitude of change in pipe radius.  The magnitude of the rate of change of both the 304 

normal and shear stress will not be the same for both the expansion and contraction conditions. 305 

Additionally, in cyclic contraction-expansion conditions, it might be expected that the nonuniform 306 

alternating behavior of stress and strain in the embedment will cause σ(x) and δ(x) to exhibit hysteresis. 307 

Finally, the embedment stress distribution is not uniform about a buried pipe nor is embedment 308 

expected to be homogeneous and isotropic as assumed for the model.  These deviations from the ideal 309 

must be considered when selecting representative values δm  and τm and when interpreting the results 310 

of calculations.  311 
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Perfectly straight pipe that will not buckle under axial compressive stress is inherently presumed for this 312 

model and analysis. Neither condition is expected for long pipe buried at shallow depth. However, 313 

application of the results of this work might support understanding that both lateral and axial 314 

movement due to pipe bending and associated stress relief would be limited.  315 

Numerical models might be developed to solve the differential equations for a wide range of boundary 316 

conditions. Such models may add functions to represent pipe-interface stress as a function of expansion 317 

and contraction.  The mathematical solution presented herein provides a basis to verify numerical 318 

model performance for a simple condition.  319 

Physical models, such as field and laboratory tests on pipe,  may be used to evaluate the effects of 320 

assumptions inherent to the mathematical solution. Such evaluation would expectedly lead to a better 321 

understanding of the nature of pipe-embedment interaction. It has been shown that five independent 322 

dimensionless variables can be used to describe the behavior of the simple model of a buried pipe that 323 

experiences a change in temperature and pressure. Hence, these variables should be controlled in 324 

experimental designs. Furthermore, it is demonstrated that sets of charts may be created that portray 325 

the results of calculations in a meaningful way. Together, these contributions will support the design of 326 

experiments that better reveal the nature of pipe-embedment interaction caused by changes in 327 

temperature and pressure. 328 
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Summary 329 

A mathematical expression describing buried pipe axial displacement caused by changes in temperature 330 

and pressure and that is resisted by friction on the pipe-embedment interface is developed to support 331 

better understanding of buried pipe behavior and facilitate additional research. The derived equations 332 

permit calculation of the upper limit to length change for an unrestrained, long, buried pipe subject to  333 

temperature and pressure change. The equations also show that the magnitude of the maximum stress 334 

is less than that which is commonly calculated for fully constrained pipe expansion and contraction but 335 

approaches the latter value as pipe increases in length.  336 

Problem variables are reduced to dimensionless form and a chart that presents relationships is 337 

presented. It is concluded that a set of 27 charts can be used to describe relationships between the two 338 

dimensionless dependent variables representing pipe wall stress and displacement and the five 339 

independent variables.   340 

The resulting equations must be used with careful consideration given to the simplifying assumptions 341 

that were made to facilitate a mathematical solution to the problem. The number of problem variables 342 

has been reduced by dimensional analysis. It is hoped that dimensionless problem variables will be 343 

helpful in the development of future experimental designs.   344 
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Notation 350 

The following symbols are used in this paper: 351 

 352 

A = pipe wall cross-sectional area.  353 

a = pipe length. 354 

b = development length - the distance from x=0 at which interface friction is fully mobilized. 355 

C = coefficient of linear thermal expansion for the pipe material.  356 

C1, C2, C3, C4 and C5 are constants derived from boundary conditions. 357 

D1 = pipe inside diameter. 358 

D2 = pipe outside diameter. 359 

E = elastic modulus representing pipe wall material. 360 

𝑘 = √
𝜓

𝐸𝑡
 361 

t = transformed pipe wall thickness. Defined herein: t = A/πD2. 362 

x = longitudinal distance from pipe fixed location.  363 

ΔP= pipe internal pressure change.  364 

ΔQ = change in total external stress on pipe. 365 

ΔT = temperature change.  366 

δm= minimum pipe displacement required to fully mobilize τm 367 

δmax= Pipe displacement at the free end of an infinitely long pipe. 368 

δ(x) = horizontal displacement of the pipe at x.  369 

ε1 = approximate change in axial strain due to a changes in temperature and pressure for the condition 370 

of unrestricted pipe axial displacement. 371 
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ε2(x) = change in horizontal pipe axial strain at x due caused by the buildup of frictional force. 372 

ν = Poisson ratio representing pipe wall material. 373 

σ(x) = horizontal stress in the pipe wall at x. (tension positive) 374 

τm = maximum interface shear stress (ψ δm).displacement. 375 

τ(x) = frictional shear stress at the embedment-pipe interface at location x due to pipe axial  376 

ψ = embedment-pipe interface friction constant (τm /δ(b)), dimensions are F/L3. 377 

 378 
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