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Abstract 

A mathematical solution is presented that describes both axial wall stress and axial displacement of 
buried pipe subject to temperature and pressure change with axial displacement resisted only by friction 
at the embedment interface. A simple model and its mathematical solution are developed to clarify the 
way a pipe transfers load to the surrounding embedment. Equations are derived for maximum pipe wall 
axial stress and maximum pipe displacement at the free ends of an infinitely long buried pipe. 
Dimensional analysis is used to reduce the number of independent variables. The results advance 
understanding of buried pipe behavior and provides a basis for additional research. Limitations 
regarding use of the derived equations are discussed. 
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Buried Pipe Axial Displacement due to Temperature and Pressure Change 

Introduction 

Methods for calculating the magnitude of unrestrained expansion and contraction of materials due to 
temperature and pressure change are taught in engineering courses and derived in commonly used text. 
These methods are often applied to calculate axial displacement of unrestrained pipe due to changes in 
temperature and both internal and external pressures. However, axial displacement of a buried pipe is 
partially restrained by friction that develops at the pipe-embedment interface. A mathematical 
expression describing axial displacement of pipe under this condition is developed herein to support 
better understanding of buried pipe behavior and facilitate additional research.  

The ASCE Task Committee on Thrust Restraint Design for Buried Pipelines recognized the need for a 
mathematical description of this problem (ASCE 2014). The committee suggested that the relationship 
between frictional resistance and displacement at the pipe-embedment interface must be similar to that 
derived by geotechnical engineers for the purpose of approximating pile foundation vertical 
displacement. Approximate closed-form solutions that describe axial displacement of piles have been 
developed by Randolph and Wroth (Randolph and Wroth 1978) and Motta (Motta 1994). Their solutions 
assume linear elastic behavior of the pile and elastic perfectly plastic behavior of adjacent soil. Such 
mathematical formulations helped clarify how foundation piles transfer load to the surrounding soil. 
These concepts, with modifications, are used herein to develop equations that describe buried pipe axial 
displacement and pipe wall axial stress caused by both temperature and pressure changes. The solution 
is then used to derive an expression for the limiting axial displacement at the free end of an infinitely 
long buried pipe due to temperature and pressure change.  The solution confirms the intuitive 
expectation that the maximum pipe wall stress in a buried pipe that is not restrained at both ends and 
experiences temperature and pressure change is less than the value calculated for a pipe restrained at 
both ends. Variables are reduced to dimensionless form and a chart that presents relationships between 
problem variables is presented. Finally, application and limitations regarding the use of derived 
equations are discussed. 

Problem Statement 
 
A simple model of a buried pipe is used  to facilitate the development of a mathematical solution. Figure 
1 illustrates the conceptual problem. A horizontal pipe of constant cross-section and length 2a 
experiences normal and shear stresses that act uniformly about its circumference at the pipe-
embedment interface. The pipe expands or contracts axially due to temperature or pressure change 
resulting in shear stress that varies along the pipe length. Normal stress acting on the pipe-embedment 
interface is herein presumed uniform along the entire length of pipe for mathematical convenience. 

Initially, there is no shear stress at the pipe-embedment interface. Shear stress at the pipe-embedment 
interface develops in response to axis-symmetric axial displacement caused by temperature change, ΔT, 
change in external total stress acting normal to the circumference, ΔQ, and change in internal pipe 
pressure, ΔP. Individually or acting together, ΔT, ΔQ and ΔP cause the pipe to expand or contract both 
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radially and axially. There are no caps or restraints at either end of the conceptual pipe. Frictional 
resistance that develops along the pipe-embedment interface is the only force opposing pipe axial 
displacement. A mathematical solution that approximately describes axial displacement for buried pipe 
experiencing ΔT, ΔQ and ΔP is derived. 

Simplifying assumptions are made to facilitate the mathematical solution. Both the pipe and 
embedment materials are presumed to be linear elastic, homogeneous and isotropic. Pipe wall strain 
due to temperature change is linearly proportional to ΔT. Body forces are not considered. Shear and 
normal stresses acting at the pipe-embedment interface are axis-symmetric.  Also, it is presumed that 
initially no shear or axial stresses act on or in the pipe wall. A stick-slip model is used to describe pipe-
embedment interface friction. The stick-slip model is described in the next section.  Additional 
simplifying assumptions are introduced in subsequent discussion as they are applied. 

The problem is two-dimensional since a pipe subject to changes ΔT, ΔQ and ΔP must expand or contract 
both radially and axially. However, for mathematical convenience, an expression is derived for the one-
dimensional axial displacement condition. Hence, functions relating pipe-embedment interface normal 
and shear stress to radial expansion or contraction of the pipe are not included in the derivation.  

Geometric symmetry about the pipe centerline allows simplification of the problem. As seen in Figure 1. 
The pipe has length 2a. The horizontal distance from the center of the pipe, x, is positive to the right of 
centerline and negative to the left.  ΔT, ΔQ and ΔP will not result in axial displacement at x=0 due to 
symmetry. Additionally, functions representing embedment-pipe interface axial shear stress τ(x), pipe 
axial displacement, δ(x), and pipe-wall axial stress, σ(x), are expected to be symmetric about x=0.  The 
symmetry of these functions is exemplified by graphs presented on Figure 2. Due to this symmetry, a 
solution that describes τ(x), δ(x) and σ(x) for positive values of x is sufficient to completely describe the 
problem.  

Expectedly, the plots of  τ(x), δ(x) and σ(x) are mirrored about the x-axis for conditions of pipe expansion 
and contraction as shown on Figure 2. This results from two conceptual model conditions. First, is the 
condition that, τ(x), δ(x) and σ(x) are zero prior to application of ΔT, ΔQ and ΔP. Second, materials are 
modeled to be linear thermoelastic and exhibit linear response to temperature and pressure change.  
Consequently, a complete solution may be represented by the solution to either the pipe expansion or 
contraction condition. Therefore, for convenience, the solution is developed herein only for the 
conditions of ΔT, ΔQ and ΔP that result in pipe expansion.  

Figure 3 presents the problem to be solved for the expanding pipe right of centerline, i.e. positive x,  
τ(x), δ(x) and σ(x) values. The left end, x=0, is “fixed” and the right end, x=a, is “free”.  The boundary 
conditions at the ends of the pipe are: δ(0) = 0, dσ(0)/dx = 0, and σ(a) = 0.  

Shear stress is presumed to increase linearly in the region 0≤x<b with τ(0)=0 and τ(b)= τm.  Shear stress is 
constant and of magnitude τm in the region b≤x≤a. Consequently, a discontinuity is present at x=b where 
δ(b) = δm.  Graphs depicting a set of possible functions of τ(x), δ(x) and σ(x) are presented on Figure 4. 
These graphs were created using the subsequently developed solution for conditions discussed later in 
this paper.  
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Pipe-Embedment Interface Shear Behavior 

Figure 4 shows τ(x) increasing in magnitude with increasing x in the region 0≤x≤b and constant in the 
region b≤x≤a. The discontinuity at x=b is a consequence of assuming a stick-slip model to represent the 
friction that develops on the pipe-embedment interface.  The stick-slip model for the pipe-embedment 
interface friction behavior is portrayed on Figure 5 and described by the following equations. 

𝜏𝜏(𝑥𝑥) =  𝛿𝛿(𝑥𝑥)𝜓𝜓  for 𝛿𝛿(𝑥𝑥) <  𝛿𝛿𝑚𝑚         1 

𝜏𝜏𝑚𝑚 =  𝛿𝛿𝑚𝑚𝜓𝜓 for 𝛿𝛿(𝑥𝑥) ≥  𝛿𝛿𝑚𝑚         2 

Where 

𝜏𝜏(𝑥𝑥) = pipe-embedment interface shear stress at x. 

𝛿𝛿(𝑥𝑥) = pipe axial displacement at x. 

𝛿𝛿𝑚𝑚= magnitude of pipe axial displacement required to mobilize τm. 

𝜏𝜏𝑚𝑚= maximum pipe-embedment interface frictional resistance.  

𝜓𝜓 = 𝜏𝜏𝑚𝑚 𝛿𝛿𝑚𝑚⁄ .  

Herein, b is termed the development length and is the least value of x at which the pipe has moved 
sufficiently to achieve τm. The mathematical solution developed herein presumes the pipe length is 
greater than the development length, i.e. a≥b. 

The pipe behavior in the regions 0≤x<b and b≤x≤a have the following interpretations: 

• 0≤x<b: the embedment adjacent to the pipe moves with the pipe as the pipe displaces axially in 
response to ΔT, ΔQ and ΔP. In other words, the embedment seemingly sticks to the pipe. The 
shear stress at the pipe-embedment interface increases linearly with displacement and occurs 
concurrently with the development of embedment shear strain. 

• b≤x≤a: The pipe has displaced axially a sufficient distance in response to changes in ΔT, ΔQ and 
ΔP to achieve τm at the pipe-embedment interface. The pipe slips past the embedment with 
constant shear stress, τm. 

Values that best represent variables τm and δm depend, among other things, on embedment properties, 
pipe-embedment interface frictional characteristics, history of pipe expansion and contraction,  and 
pipe-embedment geometric variables. The hypothetical τ(x) v. δ(x) plot, with a limiting value of τm, is 

analogous to the bilinear t-z curve proposed by Motta in his development of an approximate closed-
form solution for the displacement of axially loaded piles (Motta, 1994). Motta stated, “Procedures for 
the evaluation of t-z curves are mainly empirical, however some theoretical basis has been given (Kraft 
et al. 1981).” 
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Different sets of equations are needed to describe pipe behavior and pipe-embedment interaction on 
either side of the discontinuity at x=b. These equations are developed herein. Equilibrium, conditions of 
continuity and compatibility and boundary conditions are used to derive the problem solution.  

Figures 6a and 6b separate the problem into two parts that are characterized by  0≤x<b and b≤x≤a.  
Different boundary conditions apply to these pipe segments. Hence, these pipe segments are treated 
separately in subsequent development of a mathematical solution. 

One-Dimensional Representation of the Problem 

A one-dimensional model is developed to simplify derivation of a mathematical solution. The circular 
pipe is herein modeled as a horizontal plate of uniform thickness and having a width equal to the 
outside circumference. This is illustrated in cross-sections on Figures 7a and 7b. The length of the plate 
is equal to the length of the pipe, the width of the plate is equal to the outside circumference of the 
pipe, and the cross-sectional area of the plate is equal to the cross-sectional area of the pipe wall. 
Friction develops on only one side of the plate to appropriately represent friction developing only on the 
outside of a pipe.  

The cross-sectional area of the pipe wall and hypothetical plate are equal. To ensure this, the 
transformed thickness, t, of the hypothetical plate is the pipe cross-section wall area, A, divided by the 
pipe external circumference. 

𝑡𝑡 = 𝐴𝐴
𝜋𝜋𝐷𝐷2

            3 

Where: 

A = pipe wall cross-sectional area. 

D2 = pipe outside diameter. 

This transformation of pipe wall thickness simplifies subsequent calculations while appropriately 
maintaining important pipe problem characteristics. Comparing the circular pipe to the one-dimensional 
plate model: shear stress at the pipe-embedment interface acts on equal surface areas resulting in the 
same values for axial force; and the axial force is divided by equal cross-sectional area resulting in the 
same axial stresses. Axial stress is presumed to develop uniformly and equally within both the plate and 
pipe wall due to the contribution of shear stress on one surface. The equality of both surface and cross-
sectional areas for the plate and pipe ensures equivalent axial stress. A unit width of the transformed 
pipe is used in subsequent problem development. 
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Thermal and Pressure Effects 

The component of pipe axial strain due to ΔT, ΔQ and ΔP, ε1, is constant along the length of the pipe and 
is approximated by (Boresi and Sidebottom 1985):   

o ε1=CΔT -2ν/E (ΔQ D2
2-ΔP D1

2)/ (D2
2-D1

2)      4 

where: 

o E and ν are the Young’s modulus and Poisson ratio for the pipe wall material.  
o D1 and D2 are the pipe inside and outside diameters respectively.  
o C is the coefficient of linear thermal expansion. 
o Strain resulting in increased pipe length is positive strain. 

Pipe Wall Stress-Strain Behavior 

The component of pipe wall axial strain, ε2(x),  caused by pipe wall axial stress, σ(x) is approximated by: 

o ε2(x) = 𝜎𝜎(𝑥𝑥)
𝐸𝐸

         5 

o Herein, pipe wall compressive stress and associated strain are positive. 

Solution 

Initially, the general equations describing relationships between stress, strain and displacement are 
defined. This is followed by independent development of the governing equations for pipe segments left 
and right of the discontinuity at x= b.  

The rate of change of axial displacement with respect to x is: 

𝑑𝑑
𝑑𝑑𝑥𝑥
𝛿𝛿(𝑥𝑥) = ε1 − ε2(𝑥𝑥)          6 

Figure 8 is a free-body diagram for an infinitesimal length, dx, of a unit width of transformed pipe wall 
having transformed thickness, t.   

Horizontal force equilibrium on segment dx leads to the following expression.  

 𝑑𝑑
𝑑𝑑𝑥𝑥
𝜎𝜎(𝑥𝑥) = −𝜏𝜏(𝑥𝑥)

𝑡𝑡
          7 

Substituting Eq. 5 into Eq. 6 yields.  

𝑑𝑑
𝑑𝑑𝑥𝑥
𝛿𝛿(𝑥𝑥) = ε1 −

σ(x)
𝐸𝐸

          8 

Develop problem for 0≤x<b 

Substitute Eq. 1 into Eq. 7. 
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𝑑𝑑
𝑑𝑑𝑥𝑥
𝜎𝜎(𝑥𝑥) = −𝛿𝛿(𝑥𝑥)𝜓𝜓

𝑡𝑡
          9 

Differentiate Eq. 9 with respect to x. 

𝑑𝑑2

𝑑𝑑𝑥𝑥2
𝜎𝜎(𝑥𝑥) = −𝜓𝜓

𝑡𝑡
� 𝑑𝑑
𝑑𝑑(𝑥𝑥)

𝛿𝛿(𝑥𝑥)�         10 

Substitute Eq. 8 into Eq. 10. 

𝑑𝑑2

𝑑𝑑𝑥𝑥2
𝜎𝜎(𝑥𝑥) = −𝜓𝜓

𝑡𝑡
�ε1 −

σ(x)
𝐸𝐸
�         11  

Rearrange Eq. 11. 

 𝑑𝑑
2

𝑑𝑑𝑥𝑥2
𝜎𝜎(𝑥𝑥) − 𝜓𝜓

𝐸𝐸𝑡𝑡
σ(x) = −𝜓𝜓

𝑡𝑡
{ε1}         12 

The general solution to Eq. 12 is 

𝜎𝜎(𝑥𝑥) = 𝐶𝐶1𝑒𝑒𝑘𝑘𝑥𝑥 + 𝐶𝐶2𝑒𝑒−𝑘𝑘𝑥𝑥 + 𝜀𝜀1𝐸𝐸         13 

where 

𝑘𝑘 = �𝜓𝜓
𝐸𝐸𝑡𝑡

  

and C1 and C2 are constants.         14 

Differentiate equation 13.  

𝑑𝑑𝜎𝜎(𝑥𝑥)
𝑑𝑑𝑥𝑥

= 𝐶𝐶1𝑘𝑘 𝑒𝑒𝑘𝑘𝑥𝑥 − 𝐶𝐶2𝑘𝑘 𝑒𝑒−𝑘𝑘𝑥𝑥         15 

Substitute 13 into 8.   

𝑑𝑑
𝑑𝑑𝑥𝑥
𝛿𝛿(𝑥𝑥) = ε1 −

𝐶𝐶1𝑒𝑒𝑘𝑘𝑘𝑘+𝐶𝐶2𝑒𝑒−𝑘𝑘𝑘𝑘+𝜀𝜀1𝐸𝐸
𝐸𝐸

        16 

Rearrange 16 and integrate between x= 0 and x. 

𝛿𝛿(𝑥𝑥) = 𝐶𝐶1𝑘𝑘𝑡𝑡�1−𝑒𝑒𝑘𝑘𝑘𝑘�−𝐶𝐶2𝑘𝑘𝑡𝑡(1−𝑒𝑒−𝑘𝑘𝑘𝑘)
𝜓𝜓

+ 𝐶𝐶3        17 

where C3 is introduced as an integration constant. 

Develop problem for b≤x≤a 

By problem definition 𝜏𝜏(𝑥𝑥) = 𝜏𝜏𝑚𝑚 in the region for b≤x≤a. 

Substitute Eq. 2 into Eq. 7  

𝑑𝑑𝜎𝜎(𝑥𝑥)
𝑑𝑑𝑥𝑥

= −𝜏𝜏𝑚𝑚
𝑡𝑡

           18 
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Rearrange Eq. 18 and integrate between b and x 

 𝜎𝜎(𝑥𝑥) = −𝜏𝜏𝑚𝑚
𝑡𝑡

(𝑥𝑥 − 𝑏𝑏) + 𝐶𝐶4         19 

where C4 is introduced as an integration constant. 

Substitute Eq. 19 into Eq. 8  

𝑑𝑑
𝑑𝑑𝑥𝑥
𝛿𝛿(𝑥𝑥) = ε1 −

−𝜏𝜏𝑚𝑚
𝑡𝑡 (𝑥𝑥−𝑏𝑏)+𝐶𝐶4

𝐸𝐸
         20 

Rearrange Eq. 20 and integrate between the limits b and x 

𝛿𝛿(𝑥𝑥) = 𝜏𝜏𝑚𝑚
2𝐸𝐸𝑡𝑡

(𝑥𝑥 − 𝑏𝑏)2 − 𝐶𝐶4−𝐸𝐸𝜀𝜀1
𝐸𝐸

(𝑥𝑥 − 𝑏𝑏) + 𝐶𝐶5       21 

where C5 is introduced as an integration constant. 

Solve for Constants 

Boundary and compatibility/continuity conditions are used to solve for constants C1 through C5. 

Apply the boundary condition δ(0) = 0 to Eq. 17.  

𝐶𝐶3 = 0            22 

Apply the boundary condition, σ(a)=0 to Eq. 19 . 

𝐶𝐶4 = 𝜏𝜏𝑚𝑚
𝑡𝑡

(𝑎𝑎 − 𝑏𝑏)          23 

Apply the boundary condition δ(b) = δm to Eq.21. 

𝐶𝐶5 = 𝛿𝛿𝑚𝑚           24 

Equate Eq. 13 and Eq. 19 to ensure pipe wall axial stress compatibility at x=b. Solve for C1. 

𝐶𝐶1 = 𝑒𝑒−𝑘𝑘𝑏𝑏((𝑎𝑎−𝑏𝑏)𝜏𝜏𝑚𝑚
t

− 𝐸𝐸𝜀𝜀1 − 𝐶𝐶2𝑒𝑒−𝑘𝑘𝑏𝑏)         25 

Equate  Eq. 17 and Eq. 21 to ensure axial displacement compatibility at x=b. Solve for C2. 

𝐶𝐶2 = 𝑘𝑘((𝑎𝑎−𝑏𝑏)𝜏𝜏𝑚𝑚−𝐸𝐸𝜀𝜀1𝑡𝑡)�𝑒𝑒−𝑘𝑘𝑘𝑘−1�−𝜓𝜓𝛿𝛿𝑚𝑚
𝑘𝑘𝑡𝑡�𝑒𝑒−𝑘𝑘𝑘𝑘−1�

2         26 

Solve for development  length (b) 

Apply the boundary condition dσ(0)/dx=0 to Eq. 15 and solve for C1. 

  𝐶𝐶1 = 𝐶𝐶2           27 

Equate Eq. 25 and Eq. 26 and solve for b.  
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b =
𝜏𝜏𝑚𝑚
2 ∗𝐿𝐿𝑎𝑎𝑚𝑚𝑏𝑏𝑒𝑒𝐿𝐿𝑡𝑡𝐿𝐿� 2

𝜏𝜏𝑚𝑚
∗𝑒𝑒

−( 2
𝜏𝜏𝑚𝑚

(𝜓𝜓𝛿𝛿𝑚𝑚+𝑎𝑎𝜏𝜏𝑚𝑚𝑘𝑘𝑘𝑘−𝜀𝜀1𝑡𝑡𝑘𝑘𝑘𝑘))
�+𝜓𝜓𝛿𝛿𝑚𝑚+𝑎𝑎𝜏𝜏𝑚𝑚𝑘𝑘−𝜀𝜀1𝑡𝑡𝑘𝑘𝐸𝐸

𝜏𝜏𝑚𝑚𝑘𝑘
     28 

Solve for the maximum axial pipe displacement, 𝛅𝛅𝐦𝐦𝐦𝐦𝐦𝐦 

The distance (a-b) reaches a limiting value as b increases.  

Substitute Eq. 25 and Eq. 26 into Eq. 27 and solve for (a-b). 

(𝑎𝑎 − 𝑏𝑏) = 𝜏𝜏𝑚𝑚�𝑒𝑒−𝑘𝑘𝑘𝑘−1�
2
+(2𝜓𝜓𝛿𝛿𝑚𝑚𝑒𝑒−𝑘𝑘𝑘𝑘+𝐸𝐸𝜀𝜀1𝑘𝑘𝑡𝑡�𝑒𝑒−2𝑘𝑘𝑘𝑘−1�)
𝜏𝜏𝑚𝑚𝑘𝑘(𝑒𝑒−2𝑘𝑘𝑘𝑘−1)

      29 

Solve for the limiting value. 

lim
𝑏𝑏→∞

(𝑎𝑎 − 𝑏𝑏) = 𝐸𝐸𝜀𝜀1
𝜏𝜏𝑚𝑚

− 1
𝑘𝑘

         30 

This suggests that buried pipe of sufficient length has a limit to axial displacement, 𝛿𝛿𝑚𝑚𝑎𝑎𝑥𝑥.  

Apply this limiting value of (a-b)  to  Eq. 21  

𝛿𝛿𝑚𝑚𝑎𝑎𝑥𝑥 = 𝛿𝛿𝑚𝑚
2

+ 𝐸𝐸𝑡𝑡𝜀𝜀12

2𝜏𝜏𝑚𝑚
          31 

Observe that 𝛿𝛿𝑚𝑚𝑎𝑎𝑥𝑥is independent of pipe length.       

Solve for the limiting value of pipe wall axial stress 

The maximum axial stress, σmax, occurs at the value of x causing dσ(x)/dx=0.  

Set Eq. 15 equal to 0 and solve for x. The result is x=0.  Consequently,  σmax occurs at x=0.    

Find σmax= σ(0) using Eq. 13.  

𝜎𝜎𝑚𝑚𝑎𝑎𝑥𝑥 = 𝐶𝐶1 + 𝐶𝐶2 + 𝜀𝜀1𝐸𝐸           32 

A classical thermoelastic material that is fully restrained at both ends, without friction, and subject to 
temperature or pressure change will experience an axial pressure 𝜀𝜀1𝐸𝐸.  A value less than this is 
intuitively expected since friction on the sides of the pipe assumes some of the stress. Consequently, the 
sum  (C1+C2) < 0 is a necessary condition for Eq. 32 to be reasonable. 

Experimentation using the equations above reveals that the sum (C1+C2) is negative and approaches 0 
as embedment length, b, approaches infinity. Hence, the assumption that  𝜀𝜀1𝐸𝐸 equates to the maximum 
stress is generally appropriate for a long pipe and otherwise conservative.    

Dimensionless Variables 

The dependent variables σ(x) and δ(x) may be calculated using Eqs. 13 and 17 for the region 0≤x<b and 
Eqs. 19 and 21 for the region b≤x≤a. The independent variables are x, δm, τm, E, t, a, and ε1: where t and 
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ε1 are calculated using Eqs. 3 and 4 respectively. Figure 4 exemplifies results of calculations using the 
following variable values. 

δm = 5 mm 

τm = 20 KN/m2 

E = 3000 MN/m2 

t = 25 mm  

a = 25 m 

ε1= 0.005  

The equations were applied by first calculating the development length (b) using Eq.28. This requires the 
use of software having the LambertW function. Alternatively, b can be determined by equating Eq. 25 
and Eq. 26 and solving iteratively for a value of b that adequately approximates the equality. 
Subsequently, Eqs. 22 through 26 were used to calculate the constants C1 through C5. Finally, σ(x) and 
δ(x) were calculated by applying problem variables and constants C1 through C5 to Eqs. 13 and 17 for 
the region 0≤x<b and to Eqs. 19 and 21 for the region b≤x≤a. 

Tables can be created that present the results of calculations for dependent variables σ(x) and δ(x) for 
preselected  values of the independent variables. However, many pages of tabularized values could 
result. For example, consider representing each of the seven independent variables using three values. A 
total of 37=2187 combinations exist.  

The number of independent variables can be reduced using dimensional analysis and thereby permit a 
more condensed presentation of the derived functions. Dimensional analysis was accomplished by the 
author using methodology described by Langhaar (Langhaar 1951).  The following represents a complete 
set of dimensionless variables.   

{σ(x)/τm, δ(x)/δm, x/ δm, a/δm, t/δm, E/τm, ε1} 

The dimensionless dependent variables are σ(x)/τm and  δ(x)/δm. The number of independent variables 
has been reduced from seven to five. Representing each of the five independent variables with three 
values results in a total of 35 = 243 combinations. This is much less than the 2187 combinations needed 
for the original seven independent variables. Nevertheless, 243 is still many combinations. Furthermore, 
a table of values does not facilitate a clear understanding of the relationship between variables.   

A chart that graph σ(x)/τm and δ(x)/δm for several values of  ε1 and continuously with x would reasonably 
contain considerably more information and information that is more easily interpreted than tabularized 
results. Such a chart is presented on Figure 10. Figure 10 presents σ(x)/τm and δ(x)/δm continuously with 
respect to x and presents results for  5 values of ε1. The chart presents data for single values of 
dimensionless variables a/δm, t/δm and E/τm. Hence, a single chart represents all but the three 
dimensionless variables a/δm, t/δm and E/τm by multiple values. A set of charts, consisting of 33=27 
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individual charts, would convey calculated results for 3 values representing each of these three 
remaining dimensionless variables.  

The optimum ranges to be used in plotting sets of charts would depend most significantly on pipe 
material type, of which there are many. Creating these charts is beyond the scope of this paper.  

Application 

The conceptual pipe model and its presented solution are intended to characterize general behavior of 
buried pipe with respect to axial displacement in response to temperature and pressure change. The 
model and mathematical representation attempts to clarify the way a pipe transfers load to the 
surrounding embedment. It is expected that the reduced number of independent variables created by 
dimensional analysis will simplify experimental designs for physical models.  The mathematical solution 
may be applied to practical situations with careful consideration given to the effects of the simplifying 
and inherent assumptions. Although all assumptions and their effect on the calculated values should be 
considered when using the equations, special attention must be given to selection of τm and δm. 

Shear stress and normal stress have been assumed to be radially uniform to facilitate a mathematical 
solution to the problem. However, shear and normal stress will be dependent on the degree of 
expansion or contraction. Expectedly, both normal stress and shear stress will be lower when the pipe is 
contracting than when it is expanding, and their magnitude would be a function of the magnitude of 
change in pipe radius.  The magnitude of the rate of change of both the normal and shear stress will not 
be the same for both the expansion and contraction conditions. Additionally, in cyclic contraction-
expansion conditions, it might be expected that the nonuniform alternating behavior of stress and strain 
in the embedment and at the pipe-embedment interface will cause σ(x) and δ(x) to exhibit hysteresis. 
Finally, the embedment stress distribution is not uniform about a buried pipe nor is embedment 
expected to be homogeneous and isotropic as assumed for the model.  These deviations from the ideal 
must be considered when selecting representative values δm  and τm and when interpreting the results 
of calculations.  

Perfectly straight pipe that will not buckle under axial compressive stress is inherently presumed for this 
model and analysis. Neither condition is expected for long pipe buried at shallow depth. However, 
application of the results of this work might support understanding that both lateral and axial 
movement due to pipe bending and associated stress relief would be limited.  

Numerical models might be developed to solve the differential equations for a wide range of boundary 
conditions. Such models may add functions to represent pipe-interface stress as a function of expansion 
and contraction.  The mathematical solution presented herein provides a basis to verify numerical 
model performance for a simple condition.  

Physical models, such as field and laboratory tests on pipe,  may be used to evaluate the effects of 
assumptions inherent to the mathematical solution. Such evaluation would expectedly lead to a better 
understanding of the nature of pipe-embedment interaction. It has been shown that five independent 
dimensionless variables can be used to describe the behavior of the simple model of a buried pipe that 
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experiences a change in temperature and pressure. Hence, these variables should be controlled in 
experimental designs. Furthermore, it is demonstrated that sets of charts may be created that portray 
the results of calculations in a meaningful way. Together, these contributions will support the design of 
experiments that better reveal the nature of pipe-embedment interaction caused by changes in 
temperature and pressure. 

Summary 

A mathematical expression describing buried pipe axial displacement caused by changes in temperature 
and pressure and that is resisted by friction on the pipe-embedment interface is developed to support 
better understanding of buried pipe behavior and facilitate additional research. The derived equations 
permit calculation of the upper limit to length change for an unrestrained, long, buried pipe subject to  
temperature and pressure change. The equations also show that the magnitude of the maximum stress 
is less than that which is commonly calculated for fully constrained pipe expansion and contraction but 
approaches the latter value as pipe increases in length.  

Problem variables are reduced to dimensionless form and a chart that presents relationships is 
presented. It is concluded that a set of 27 charts can be used to describe relationships between the two 
dimensionless dependent variables representing pipe wall stress and displacement and the five 
independent variables.   

The resulting equations must be used with careful consideration given to the simplifying assumptions 
that were made to facilitate a mathematical solution to the problem. The number of problem variables 
has been reduced by dimensional analysis. It is hoped that dimensionless problem variables will be 
helpful in the development of future experimental designs.   
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x = longitudinal distance from pipe fixed location. 
E = elastic modulus representing pipe wall material. 
ν = Poisson ratio representing pipe wall material. 
D1 = pipe inside diameter. 
D2 = pipe outside diameter. 
A = pipe wall cross-sectional area. 
t = transformed pipe wall thickness. Defined herein: t = A/πD2.  
a = pipe length. 
b = development length - the distance from x=0 at which interface friction is fully mobilized. 
ΔP= pipe internal pressure change. 
ΔT = temperature change.  
ΔQ = change in total external stress on pipe. 
C = coefficient of linear thermal expansion for the pipe material.  
ε1 = approximate change in axial strain due to a changes in temperature and pressure for the condition 
of unrestricted pipe axial displacement. 
ε2(x) = change in horizontal pipe axial strain at x due caused by the buildup of frictional force. 
σ(x) = horizontal stress in the pipe wall at x. (tension positive) 
δ(x) = horizontal displacement of the pipe at x.  
τ(x) = frictional shear stress at the embedment-pipe interface at location x due to pipe axial 
displacement. 
τm = maximum interface shear stress (ψ δm). 
δm= minimum pipe displacement required to fully mobilize τm 
δmax= Pipe displacement at the free end of an infinitely long pipe. 
ψ = embedment-pipe interface friction constant (τm /δ(b)), dimensions are F/L3. 

𝑘𝑘 = �𝜓𝜓
𝐸𝐸𝑡𝑡

 

C1, C2, C3, C4 and C5 are constants derived from boundary conditions. 
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Figure 1. Conceptual pipe model.
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Figure 2. Pipe-interface shear stress τ(x), pipe axial displacement δ(x), pipe axial stress, σ(x), and development length.



ΔQ

+x

ΔQ 

ΔQ 

 a 

D2 D1 ΔP ΔP 

Fi
xe

d
 E

n
d
 

τ(x) 

τ(x) 

Figure 3. abridged conceptual pipe model.
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development length.
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Figure 5. Pipe-embedment interface stick-slip model.
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Figure 6. Two parts of the problem.
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Figure 7. Free Body of infinitesimal axial length (dx) of a unit circumferential length of pipe wall having thickness t.
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Figure 9. Example chart that presents results of calculations in dimensionless terms.
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